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Abstract

The last decade has seen much work on quantitative understanding of

human behaviour, with online social interaction offering the possibility of

more precise measurement of behavioural phenomena than was previously

possible. A parsimonious model is proposed that incorporates several

observed features of behavioural contagion not seen in existing epidemic

model schemes, leading to metastable behavioural dynamics.

1 Introduction

There has been much recent interest in modelling the spread of behaviours in
society, particularly health behaviours with respect to infectious disease (Funk
et al., 2010b). At the same time, recent empirical work highlights that the
complex nature of social contagion makes it very different from ‘simple’ mi-
croparasite contagion (Centola, 2010). Modelling techniques have so far typ-
ically involved either explicit stochastic simulation (Centola and Macy, 2005,
2007; Salathé and Bonhoeffer, 2008; Funk et al., 2009), or else application
of mathematical models originally developed for other applications, such as
the Susceptible-Infectious-Susceptible (SIS) epidemic model considered by Kiss
et al. (2010) and Funk et al. (2010a). An alternative is to use a discrete-time for-
malism (Dodds and Watts, 2004, 2005), next-generation arguments (Funk et al.,
2009) or methods from statistical physics (de Oliveira, 1992; Pereira and Mor-
eira, 2005) to obtain results about asymptotic behaviour of socially-motivated
models, although typically calculating transient features of system dynamics
requires Monte-Carlo simulation.

While existing dynamical models have clearly significantly clarified thinking
about behavioural spread, and have also motivated important empirical work,
they often suffer from lack of mathematical transparency, or are not customised
specifically to social contagion. In this paper, a mathematical model that has a
small number of easily interpretable parameters is proposed, which reproduces
several key features of empirical work and empirically motivated simulation.

2 Methods

2.1 General model

The general model framework is described as follows. Consider a large, closed
population, with a proportion B(t) of that population engaging in a behaviour
at a given time t. At a given time, each individual is canvasing the opinions of
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n other individuals in the population in such a way that the proportion of indi-
viduals in the population canvassing m individuals engaging in the behaviour in
question is Dm (which depends on B(t) in addition to other static parameters).
We assume that individuals with m canvased neighbours who are engaging in
the behaviour commence at rate τm or cease at rate γm as appropriate for their
current behaviour state. The dynamical system for behaviour prevalence in the
population at time t is then

Ḃ(t) =

n
∑

m=0

Dm(t) ((1−B(t))τm −B(t)γm) . (1)

To specify an integrable system, it is then necessary to define a form for the
dynamical parameters τm, γm and a process for the generation of the proportion
Dm.

2.2 Dynamical parameters

We now choose a form for the vectors (τm), (γm). It is worth noting that the gen-
eral form above can be specialised to incorporate several other dynamical forms.
For example, if γm = γ and τm = mτ we recover the SIS dynamics of Funk et al.
(2010b) and Kiss et al. (2010). As another example, the approach of Salathé and
Bonhoeffer (2008) takes τm = m/n, γm = (n−m)/n. Importantly, both of these
schemes only depend on the mean of Dm and so are unaffected by the different
distributions proposed later. Dodds and Watts (2004, 2005) consider generalised
‘dose response’ behaviour, which in the simplest case is a discrete-time version
of the simplest continuous-time model considered here. The more sophisticated
models analysed by Dodds and Watts make use of the discrete-time framework
to consider agents with memory whilst preserving independent sampling of the
population, while here dynamics remain Markovian but the population samples
are potentially dependent.

For opinion dynamics, motivated by a comprehensive review of the literature
and compelling empirical evidence (Centola and Macy, 2007; Centola, 2010), we
expect an S-shaped curve for response of behavioural transmission probability
to number of encounters with a behaviour. For simplicity, the limiting case of
such a curve is taken so that

τm =

{

τ if m ≥ a ,

0 otherwise.
(2)

This complex form for transmission has not yet been included in other dynamical-
systems models of behaviour spread, and is the main benefit of the modelling
approach considered here. We assume for simplicity that cessation of behaviour
happens over time at a rate independent of m, and for convenience work in
units of time where γm = 1. Where a is close to n/2, then there will be simi-
larities between these transmission dynamics and majority vote models (e.g. de
Oliveira, 1992; Pereira and Moreira, 2005) although behaviour cessation will be
qualitatively different.

2.3 Canvasing method

To complete our model description, we need a form for the proportion Dm. The
simplest assumption is that there are n independent trials with each trial having
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probability B(t), meaning that

Dm = Bin(m|n,B(t)) , (3)

where Bin() is a binomial probability mass function as defined in the Appendix.
This is interpreted as each individual canvasing the opinion of n individuals,
chosen at random from the whole population. We now consider two different
generalisations of the binomial distribution through different models of canvas-
ing.

2.3.1 Clustering

To introduce clustering to the trials, we consider the method of Klotz (1973)
(and the parameterisation of Lindqvist (1978)) for generation of Dm. In this
construction, the n individuals canvased have states {Xi}i=1,...,n, which are
stochastic variables taking the value 1 for individuals engaging in the behaviour
and 0 otherwise. These are chosen sequentially with

Pr(X1 = 1) = B(t) ,

Pr(Xi = 1|Xi−1 = 1) = B(t) + c(1 −B(t)) ,

Pr(Xi = 0|Xi−1 = 0) = (1− B(t)) + cB(t) .

(4)

This introduces one static parameter, the clustering c ∈ [0, 1]. The full distribu-
tion Dm for each possible value m of

∑

i
Xi that follows from this construction

is not reproduced here due to its complexity, but can be found in equation (3.1)
of Klotz (1973).

2.3.2 Homophily

Homophily is the social process of “associating with like people,” and could be
modelled in the framework presented here by stratifying the population as stan-
dard epidemic models represent risk groups (Keeling and Rohani, 2007). This
would increase the dimensionality of the dynamical system, and remove much of
its attractive simplicity. An alternative is to model homophily as a partition of
the population into self-loving groups. This means that each individual canvases
without replacement from a finite group of size N . A homophily parameter h
can then be defined through

h :=
n

N
∈ [0, 1] , (5)

so that as N → ∞ individuals canvas the whole population, leading to the
minimum homophily value of 0, and where N = n individuals canvas all of
their homophily group leading to the maximum h = 1. Where M is the largest
integer less than NB(t), a well behaved distribution is then

Dm = (1+M−NB(t))Hyp(m|N,M, n)+(NB(t)−M)Hyp(m|N,M+1, n) , (6)

where Hyp(m|N,M, n) is the hypergeometric distribution, representing the prob-
ability of m successful trials out of n, drawing without replacement from a pop-
ulation of size N with M individuals in the positive state. Equation (6) assumes
that homphily groups are as representative as possible of the prevalence of be-
lief in the population. This assumption therefore represents a limiting case of
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the process that generates finite groups. While in practice these groups are
likely also to be heterogeneous with respect to behaviour prevalence, such het-
erogeneity is similar to the clustering introduced above, and so once we have
determined the impact of clustering, it makes sense to consider homophily at
minimal values of clustering to deliver an unambiguous dynamical signature.

3 Results and Discussion

Having defined an Ansatz for a model of behavioural contagion, Equation (1)
becomes a closed system with one dynamical variable B(t), a real transmission
parameter τ and an integer threshold for adoption of behaviour, a. We also
defined two methods for canvasing of opinion that introduce a neighbourhood
size n, and either clustering c or homophily h. Having an ODE-based dynamical
system as a model means that critical behaviour, in particular the ability of a
behaviour to become established in a sizeable proportion of the population, can
be evaluated exactly (meaning at machine precision) and numerical integration
is not computationally intensive. At the same time, this model includes the
feature of complex contagion as defined by equation (2), meaning that it can
capture behaviour not present in, for example, the SIS model.

While general analytical results for this model are not obvious, if we consider
the case where n = 2, a = 2 then there are three fixed points of the system with
complex contagion:

B∗

0
= 0 , B∗

1
= 1

2

(

1−
√

1− (4γ/τ)
)

, B∗

2
= 1

2

(

1 +
√

1− (4γ/τ)
)

. (7)

When τ < 4γ, only the behaviour-free steady state exists, and is stable. When
τ > 4γ, B∗

0
and B∗

2
are stable steady states, with B∗

1
being an unstable fixed

point above which the system evolves towards B∗

2
and below which the system

evolves towards B∗

0
. This is in contrast to SIS dynamics where there are only

two fixed points: B̃0 = 0, which is stable when 2τ < γ, and B̃1 = 1− (γ/(2τ)),
which is stable when 2τ > γ.

Figure 1 shows some results from numerical integration of the model. Panel
(a) shows three of the distributions considered: binomial; clustered and ho-
mophilous. In (b), we see one of the main features of this model that is quali-
tatively different from SIS dynamics: complex contagions are metastable, with
both the ‘behaviour-free’ and ‘established behaviour’ steady states being ab-
sorbing. As Centola and Macy (2005) argued, this is a necessary feature for
explaining how initially unpopular norms can become established and main-
tained through social pressure.

Also in Figure 1, the impact of clustering (Panel (c)) and homophily (Panel
(d)) on behavioural dynamics is shown. This provides a mathematical explana-
tion for the results seen in empirical work and simulation (Centola and Macy,
2007; Centola, 2010), namely that clustering enhances behavioural transmis-
sion, while homophily (as defined here, subject to caveats about interpretation)
reduces behavioural transmission. The non-monotonicity seen in Panel (d) is
just an artefact of the discretisation equation (6). These effects are not seen for
simple transmission, which only depends on the mean of the distribution Dm

and so is unaffected by changes in clustering c or homophily h.
In summary, the mathematical model introduced here complements and de-

velops existing work in three main ways. Firstly, it incorporates many of the
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advantages of simple transmission models like the SIS model, in that the thresh-
old behaviour, fixed points, transient behaviour and parameter sensitivity can be
calculated numerically at machine precision. Secondly, the rates and processes
defined implicitly in equation (1) can be used to define a natural stochastic
model using the methods of Dangerfield et al. (2009). Since there are relatively
few parameters, this opens up the possibility of rigorous statistical fitting of
model parameters, although finding a robust method for inference and suffi-
ciently high-quality data is likely to pose a significant challenge. Finally, the
mathematical transparency of the model acts as a guide to intuition, mean-
ing that the exact causes of effects seen in more sophisticated simulations and
empirical work can be better interpreted.
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M. Salathé and S. Bonhoeffer. The effect of opinion clustering on disease out-
breaks. Journal of the Royal Society Interface, 5(29):1505–8, Dec 2008.

6



(a)

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of contacts engaging in behaviour, m

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n

 

 

Binomial
h = 2/3
c = 1/3

(b)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

B
eh

av
io

ur
 p

re
va

le
nc

e

 

 

Behaviour established
Behaviour ceases

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Clustering, c

B
eh

av
io

ur
 p

re
va

le
nc

e

 

 

τ = 1.5
τ = 2
τ = 3
τ = 5

(d)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Homophily, h

B
eh

av
io

ur
 p

re
va

le
nc

e

 

 

τ = 1.5
τ = 2
τ = 3
τ = 5

Figure 1: Numerical results for the behavioural model. Parameters n = 6, a = 3
are common to all figures. (a) shows the proportion Dm for the baseline, bi-
nomial model, in addition to the clustered distribution with c = 1/3 and the
homophily model with h = 2/3. (b) shows temporal dynamics of a complex
contagion with τ = 1.8, c = h = 0. Depending on the initial prevalence of be-
haviour, both the ‘behaviour-free’ and ‘established behaviour’ steady states can
be reached, and are stable. The phase space of complex contagion is also shown
for (c) clustering and (d) homophily. For given values of τ , c and h, different
curves show the minimum values of behaviour prevalence that are needed for
the system to evolve towards the ‘established behaviour’ steady state.
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A Statistical notation

The binomial coefficients are given by

(

n
m

)

=
n!

m!(n−m)!
. (8)

The binomial probability mass function is, for integer m ∈ {0, . . . , n},

Bin(m|n, p) =

(

n
m

)

pm(1 − p)n−m . (9)

The hypergeometric probability mass function is, for integer m ∈ {0, . . . , n},

Hyp(m|N,M, n) =

(

M
m

)(

N −M
n−m

)

(

N
n

) . (10)
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